If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+30t=0
a = 3; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·3·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*3}=\frac{-60}{6} =-10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*3}=\frac{0}{6} =0 $
| (9x+6)/2=3x | | 7-2z=5-z | | 10m+5=13 | | 78(6x-1)=42(10x+5) | | 32(9x-9)=24(6x+6) | | 8(3x-6)=120 | | F(x)=4x2+5x-1 | | 40x^2+172x+112=0 | | 3m*2m+14=5m | | (x-2)/(x+3)=0 | | 2^x+2^4-x-10=0 | | 234=-u+13 | | 5÷5x+1+7÷3x+1=18 | | k^2-k=0.5 | | g(-2)=3(-2)-8 | | 5/5x+1+7/3x+1=18 | | 5(3k+)=5(4k | | 4x2+60x-1080=0 | | 4a+7=14+a | | 5x+10x+3=5x+6 | | K1=m2-m3 | | 14-3x=24 | | 2y-3-y=3y+5 | | 2×-3-x=3×+5= | | 5x+4(0)=9 | | 5x-3(x-5)=-2+5x-4 | | 4x+2x-8x=4x-2x | | -16=x/7-9 | | x/9+3=2 | | x/10-4=11 | | 4.1x-7.4=-11.5 | | 3/5a+2=8 |